MSc Chemistry Module Guide pursuant to the Examination Regulations of September 8, 2020

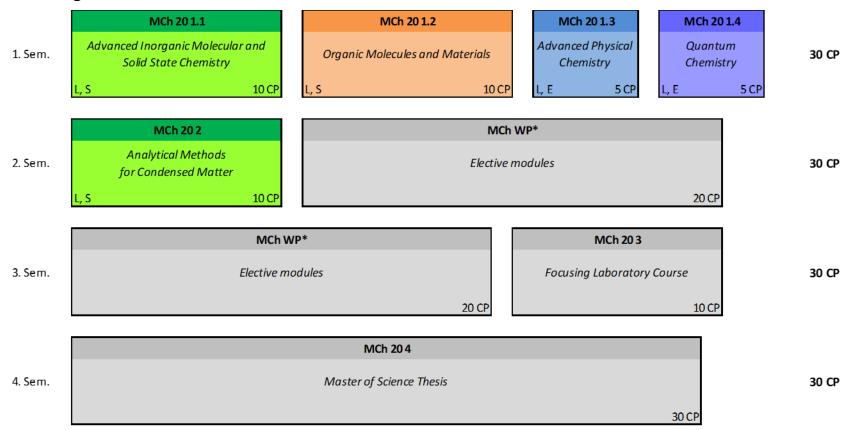
Content

Abbreviations	3
Module Overview	4
Program starting in the winter semester	4
Program starting in the summer semester	5
Compulsory Modules	6
Advanced Inorganic Molecular and Solid State Chemistry	6
Organic Molecules and Materials	8
Advanced Physical Chemistry	10
Quantum Chemistry	12
Analytical Methods for Condensed Matter	14
Focusing Laboratory Course	16
Master's Thesis	18
Elective Modules	19
Industrial Inorganic Molecular Chemistry	19
Supramolecular Chemistry	21
Advanced Quantum Chemistry Methods	23
Surface Science and Electrochemistry	25
Chemical Biology / Medicinal Chemistry	27
Organometallic Chemistry	29
Molecular Dynamics of Time Dependent Phenomena	31
Macromolecular Chemistry	33
Inorganic Materials	35
Biophysical Chemistry	37
Theoretical Methods for Condensed Matter	39
Synthesis and Retrosynthesis	41
Modern Methods to Elucidate Structure-Function-Relationships in Biomacromolecules	43
Natural Product Chemistry	45
Magnetic Resonance Spectroscopy	47
Sustainability in Chemistry	49

Abbreviations

riving raculty of ivialifeliality and ivalural science	FMNS	Faculty of Mathematics and Natural Science
--	------	--

L Lecture
E Exercise
S Seminar
LC Lab course
CP Credit points

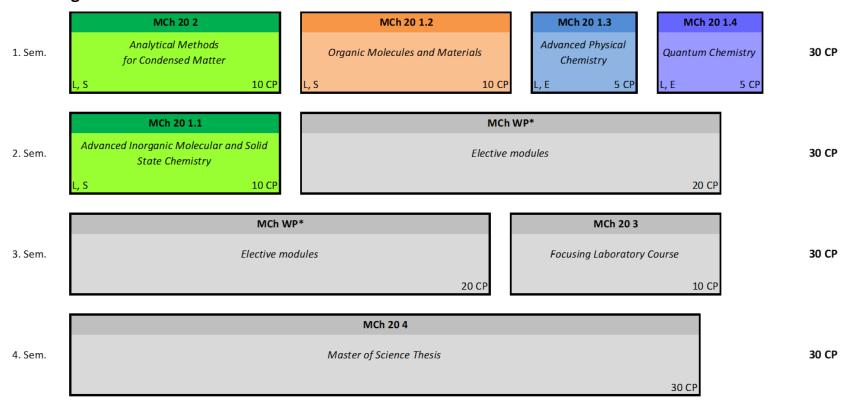

ECTS European Credit Transfer System

SLT Self-learning time

en. English

Module Overview

Program starting in the winter semester



^{*} A total of 4 elective modules must be completed.

WP-modules in the winter term: WP~8, WP~9, WP~10, WP~11, WP~12, WP~13, WP~14, WP~15, WP~16~(duration:~2~semesters)

WP-modules in the summer term: WP 1, WP 2, WP 3, WP 4, WP 5, WP 6, WP7, WP 17

Program starting in the summer semester

^{*} A total of 4 elective modules must be completed.

WP-modules in the winter term: WP 8, WP 9, WP 10, WP 11, WP 12, WP 13, WP 14, WP 15, WP 16 (duration: 2 semesters)

WP-modules in the summer term: WP 1, WP 2, WP 3, WP 4, WP 5, WP 6, WP7, WP 17

Compulsory Modules

Advanced Inorganic Molecular and Solid State Chemistry

Module No./ Code: MCh 20 1.1

1. Contents and Qualification Objectives

_							
C	\sim	n	+	Δ	n	+	c

- **Coordination chemistry**: mechanisms of reactions of coordination compounds (ligand exchange, electron transfer reactions)
- **Reaction steps in homogeneous catalysis:** oxidative additions and reductive eliminations, σ-bond metatheses, insertion and elimination reactions
- Transition metal compounds: metal hydrides and metal organyls, carbene complexes, olefin complexes (synthesis, structure, bonding and reactions) metal activation of industrially relevant substrates, like dihydrogen, alkanes, carbon monoxide, olefins
- Main group element organyls: element organyls of the boron group (triels) hydroboration and carbometallation reactions
- Structural chemistry of inorganic solids: structural arguments, packing types in solid compounds, phase transitions, systematic deduction of structures starting from dense sphere packings via filling of octahedral and tetrahedral gaps, molecular lattice, chain-structures, layered structures, network structures, diamandoid structures.
- Intermetallic phases and compounds: alloys, Zintl phases and Zintl salts, polycationic and polyanionic clusters of the main group elements, Wade's rules
- Subvalent transition metal compounds: magnetic phenomena, metal-metal bonding, metal-metal multiple bonding, metal clusters, condensation of clusters, metal rich compounds, cluster connection
- Solid-state materials: precious stones, their use and production, diamond and diamond synthesis, fullerenes, carbon nanotubes, graphene
- **Chemical bonding in solids**: introduction to the theory of electronic band structure, density of states, crystal orbitals.

Qualification Targets

- Acquisition of enhanced knowledge of the most important classes of modern inorganic molecular compounds
- Develop a deeper understanding of
 - o transition metal hydrides, organyls and carbene complexes
 - o elementary steps in homogenous catalysis and in small molecule activation
 - o structure and structure-property relationships of solid state compounds
- Advanced knowledge of concepts to describe the structure and chemical bonding in inorganic chemistry
- Successful application of learning strategies
- Use of the knowledge gained in the discussion of unknown compounds
- Information management
- Critical thinking
- Problem-solving skills
- Thorough knowledge and analytical skills for planning synthetic routes to complex chemical molecules
- Analysis of and reflection on complex questions
- Enhance ability to communicate

2. Course Format

Course	Topic	Language of	Group	Cour	Workload
Type		Instruction	Size	se	[hr] (On-
				Units	Site/SLT)

					per Wee k	
L	molecular and	solid	en.	60	6	180 (90 / 90)
S	Seminar for th	e lecture	en.	20	2	120 (30 / 90)
5						
None						
	Degree Program/ Component Compulsory/ Elective					Program- Related Semester
MSc Chemistry Compulsory						1 or 2
S Credit Po	ints					6. ECTS CP
None						
Written exa	amination; en.					10
		8. V	Vorkload	9). Dura	tion
	1.1	3	300 hr	1 semester		
n						
Prof. Dr. A.	C. Filippou, Pro	f. Dr. C. Lu,	, Prof. Dr. N. Ko	rnienko		
Prof. Dr. A.	C. Filippou, Pro	f. Dr. C. Lu,	, Prof. Dr. N. Ko	rnienko		
Module Coordinator Prof. Dr. A.C. Filippou, Prof. Dr. C. Lu, Prof. Dr. N. Kornienko Organizational Unit Offering the Module Department of Chemistry (FMNS), Institute for Inorganic Chemistry						
Literature: J. F. Hartwig, Organotransition Metal Chemistry, Univ. Science Books. R. H. Crabtree, The Organometallic Chemistry Of The Transition Metals, Wiley. C. Elschenbroich, Organometallics, Wiley-VCH. U. Müller, Anorganische Strukturchemie, Vieweg+Teubner Verlag. J. E. Huheey, E. A. Keiter, R. L. Keiter, Anorganische Chemie: Prinzipien von Struktur und Reaktivität, De Gruyter. L. H. Gade, Koordinationschemie, Wiley-VCH. F. A. Cotton, Advanced Inorganic Chemistry, Wiley.				·		
	MSc Chemi S Credit Po None Written exa Winter and summer se n Prof. Dr. A. Prof. Dr. A. Departmen J. F. Hartwig R. H. Crabti C. Elschenb U. Müller, A	MSc Chemistry S Credit Points None Written examination; en. Winter and summer semester Prof. Dr. A.C. Filippou, Pro Prof. Dr. A.C. Filippou, Pro Department of Chemistry J. F. Hartwig, Organotrans R. H. Crabtree, The Organor U. Müller, Anorganische S.	molecular and solid state chemistry S Seminar for the lecture None Degree Program/ Comport MSc Chemistry S Credit Points None Written examination; en. Winter and summer semester Prof. Dr. A.C. Filippou, Prof. Dr. C. Lu Prof. Dr. A.C. Filippou, Prof. Dr. C. Lu Department of Chemistry (FMNS), In J. F. Hartwig, Organotransition Meta R. H. Crabtree, The Organometallic Co. Elschenbroich, Organometallics, V. U. Müller, Anorganische Strukturche	molecular and solid state chemistry S Seminar for the lecture en. None Degree Program/ Component MSc Chemistry S Credit Points None Written examination; en. 8. Workload Winter and summer semester	molecular and solid state chemistry S Seminar for the lecture en. 20 None Degree Program/ Component Compulso Electivo MSc Chemistry Compulso S Credit Points None Written examination; en. 8. Workload Winter and summer semester Prof. Dr. A.C. Filippou, Prof. Dr. C. Lu, Prof. Dr. N. Kornienko Prof. Dr. A.C. Filippou, Prof. Dr. C. Lu, Prof. Dr. N. Kornienko Department of Chemistry (FMNS), Institute for Inorganic Chemis J. F. Hartwig, Organotransition Metal Chemistry, Univ. Science B. R. H. Crabtree, The Organometallic Chemistry Of The Transition of C. Elschenbroich, Organometallics, Wiley-VCH. U. Müller, Anorganische Strukturchemie, Vieweg+Teubner Verlag. J. E. Huheey, E. A. Keiter, R. L. Keiter, Anorganische Chemie: Printer of the prin	L Advanced inorganic molecular and solid state chemistry S Seminar for the lecture en. 20 2 None Degree Program/ Component Compulsory/ Elective MSc Chemistry Compulsory S Credit Points None Written examination; en. 8. Workload 9. Dura Winter and summer semester 300 hr 1 semes None Prof. Dr. A.C. Filippou, Prof. Dr. C. Lu, Prof. Dr. N. Kornienko Prof. Dr. A.C. Filippou, Prof. Dr. C. Lu, Prof. Dr. N. Kornienko Department of Chemistry (FMNS), Institute for Inorganic Chemistry J. F. Hartwig, Organotransition Metal Chemistry, Univ. Science Books. R. H. Crabtree, The Organometallic Chemistry Of The Transition Metals, C. Elschenbroich, Organometallics, Wiley-VCH. U. Müller, Anorganische Strukturchemie, Vieweg+Teubner Verlag. J. E. Huheey, E. A. Keiter, R. L. Keiter, Anorganische Chemie: Prinzipien v

Organic Molecules and Materials

Module No./ Code: MCh 20 1.2

1. Contents and Quali	fication Obje	ectives					
Contents Qualification Targets	Synthe equivalence organ reacti Mode organ reacti Mode reacti Stered methole Retrost Natur Polym Liquid Mater Mode Prima Enzyn Biosyr Biosyr Detail Under Detail Know Interp Efficie Inform Critica Proble Thoro comp Streng Streng Streng	 Modern processes for C-C coupling reactions: C-nucleophiles (enolates, metal organic reagents, transmetallation, homo- und cross coupling reactions), redox reactions Modern processes for C=C coupling: Wittig and Wittig-like reactions, McMurry reaction, metal-induced olefin synthesis Stereoselective synthesis: ex-chiral pool synthesis, chiral auxiliaries, enzymatic methods, enantioselective catalytical methods Retrosynthesis Natural product synthesis: protecting groups, total synthesis Polymers (linear, branched, crosslinked, dendrimers) Liquid crystals Materials for electronic/optoelectronic applications (OTFTs, OLEDs, OPVs) Modern analytical techniques Primary and secondary metabolism Enzyme classes and cofactors Biosynthesis of fatty acids and polyketides Biosynthesis of terpenes Detailed knowledge of key reactions and concepts in modern organic chemistry Understanding of multistep reactions Detailed knowledge of natural compound chemistry and material chemistry Knowledge of modern analytical methods Interpretation of chemical publications Efficient learning strategies Information management Critical thinking Problem solving skills Thorough knowledge and analytical skills for planning synthetic routes to complex chemical molecules Strengthen decision-making abilities Strengthen reflectivity 					
2. Course Format	• Comm	nunication skills					
2. Course rollilat	Course	Topic	Language of	Group	Cours	Workload	
	Туре	торіс	Instruction	Size	e Units per Week	[hr] (On- Site/ SLT)	
	L Synthetic chemistry, en. 60 6 180 (90 / 90) products						
		Complete and a selection of the selectio	1	20	1 2	120	

Synthetic chemistry

120

(30 / 90)

20

en.

3. Module Prerequisites	5							
Required	None							
Recommended	Recommended							
4. Module Application								
	Degree Progran	n/ Component	Compulsory/ Elective	Program- Related Semester				
	MSc Chemistry		Compulsory	1				
5. Requirements for EC	TS Credit Points			6. ECTS CP				
Study Achievement(s)								
Examinations and	Written examination; en.			10				
Examination Language								
7. Cycle 8. Workload 9. Duration								
Winter semester Summer semester	Winter and summer semester	300 hr	1 sem	nester				
10. Module Organizatio	n							
Instructor	The instructors at the Keki	ulé Institute of Organic Ch	emistry and Bioch	emistry				
Module Coordinator	Prof. Dr. S. Höger							
Organizational Unit Offering the Module	anizational Unit Department of Chemistry (FMNS), Kekulé Institute of Organic Chemistry and							
11. Other								
Literature:	L. Kürti, B. Czakó, Strategic Applications of Named Reactions in Organic Synthesis, Elsevier. L. S. Hegedus, B. C. G. Söderberg, Transition Metals in the Synthesis of Complex Organic Molecules, University Science Books. F. A. Carey, R. J. Sundberg: Advanced Organic Chemistry, Part A and B, Springer. Further recommended literature will be announced in the courses.							

Advanced Physical Chemistry

Module No./ Code: MCh 20 1.3

					UNIVERS	SITAT	BONN	
1. Contents and Qualif	ication Obje	ectives						
Contents	aggre fluids • Energ and d • Spect space reson	 Structure formation: models for nucleation, maturation, interfaces, membranes, aggregates, vesicles, protein/oligonucleotide folding and structure, and complex fluids Energetic excitations: principle aspects, excitation coupling, energy transport and dissipation, application aspects 						
Qualification Targets 2. Course Format	 Application of thermodynamical principles and spectroscopic methods from bachelor's program to complex systems Consolidation and extension of model formation skills and development of concepts for the description of complex matter Acquisition of knowledge of advanced spectroscopic and microscopic analysis techniques Assessment of methods for solving physico-chemical problems Analytical problem solving competence Critical thinking 							
2. Course Format	Carrea	T '-		1	Carrier	C	14/	
	Type	Course Topic Type		Language of Instruction	Group Size	Cours e Units per Week	Workload [hr] (On- Site/ SLT)	
	L	Advanced topi physical chem		en.	60	2	75 (30 / 45)	
	E	, , ,		en.	20	2	75 (30 / 45)	
3. Module Prerequisite	es							
Required	None							
Recommended								
4. Module Application								
	Degree Program/ Component Compulsory/ Elective Related Semester							
	MSc Chemistry Compulsory 1							
5. Requirements for E	CTS Credit P	oints					6. ECTS CP	
Study Achievement(s) Examinations and		e achievable cre kamination; en.	dits are for	the exercises			5	
Examination Language								
7. Cycle			8. V	Vorkload	9	9. Durat	ion	
Winter semester ☐ Summer semester ☐		Winter and summer semester 150 hr 1 semester						

10. Module Organization	on
Instructor	The instructors at the Institute of Physical and Theoretical Chemistry
Module Coordinator	Prof. Dr. U. Kubitscheck
Organizational Unit Offering the Module	Department of Chemistry (FMNS), Institute of Physical and Theoretical Chemistry
11. Other	
Literature:	C. Rullière, Femtosecond Laser Pulses, Springer. H. Kuhn, HD. Försterling, D. H. Waldeck, Principles Of Physical Chemistry, Wiley. W. Demtröder, Laserspektroskopie, Springer. K. Dill, S. Bromberg, Molecular Driving Forces: Statistical Thermodynamics in Biology, Chemistry, Physics, and Nanoscience, Garland Science. E. Kreyszig, Advanced Engineering Mathematics, Wiley

Quantum Chemistry

Module No./ Code: MCh 20 1.4

1. Contents and Qualification Objectives

_							
C	\sim	n	+	Δ	n	+	c

This module provides an introduction to modern calculation methods for quantum chemistry. It provides methodical knowledge that chemists absolutely need today to understand the literature and provide theoretical support for their own studies. The module is based on a new concept that aims to present quantum chemistry from a qualitative chemistry point of view, but without neglecting the mathematical steps required for a quantitative description of molecules and their properties. Therefore, the mathematical formulas as well as chemical concepts and their relation to quantum chemical quantities are discussed in detail. In particular, the distinction between measurable properties (observables) and qualitative concepts is emphasized. Furthermore, the route from a physical model to its mathematical formulation, algorithmic implementation and subsequent application will be a central point.

Contents

- Introduction to the quantitative description of electronic structure
- Hartree-Fock and basis sets
- Total energies, electron densities, orbital energies and orbitals
- Qualitative electronic structure of molecules in the MO model; population analyses
- Hückel models and semi-empirical MO methods
- Basics of wave function based electron correlation methods
- Geometry optimization and potential energy surfaces
- Basics and applications of density functional theory
- Thermochemistry

Qualification Targets

- Basic knowledge of the qualitative and quantitative description of the electronic structure of molecules and their chemical and physical properties
- Understanding of modern calculation methods in theoretical chemistry
- Application and critical assessment of the theoretical models learned and methods for the computational or phenomenological solution of chemical problems
- Learning competence
- Methodological competence
- Self-competence

2. Course Format

Course	Topic	Language of	Group	Cours	Workload
Туре		Instruction	Size	е	[hr] (On-
				Units	Site/ SLT)
				per	
				Week	
L	Quantum chemistry	en.	60	2	75
					(30 / 45)
Е	Exercise for the lecture	en.	20	2	75
					(30 / 45)

3. Module Prerequisites

Required	None
Recommended	

4. Module Application							
	Degree Progran	Compulsory/ Elective	Program- Related Semester				
	MSc Chemistry		Compulsory	1			
5. Requirements for ECT	TS Credit Points			6. ECTS CP			
Study Achievement(s)	50% of the achievable cred	dits are for the exercises					
Examinations and Examination Language	Written examination; en.						
7. Cycle		8. Workload	9. Duration				
Winter semester Summer semester	Winter and summer semester	150 hr	1 semester				
10. Module Organizatio	n						
Instructor	Prof. Dr. S. Grimme, Dr. A.	Hansen					
Module Coordinator	Prof. Dr. S. Grimme						
Organizational Unit Offering the Module	Department of Chemistry (FMNS), Institute of Physical and Theoretical Chemistry						
11. Other							
Literature:	F. Jensen, Introduction to	Computational Chemistry,	Wiley.				

Analytical Methods for Condensed Matter

Module No./ Code: MCh 20 2

					OTVIVEIV.	ווועווכ	DOM
1. Contents and Qualifi	cation Obje	ectives					
Contents	Advar	nced application	s of NMR S	Spectroscopy			
	Basic	concepts of crys	tallograph	У			
	• Physic	cal principles of	the phenoi	mena of diffract	ion of X-rays	s and ele	ectrons
	• Applic	cation of these m	ethods to	determine the p	hysical struc	cture of	crystalline and
	noncr	ystalline materia	als				
	-	Absorption and	-	•	roscopies ap	plied fo	r physical and
		onic structure ir					
Qualification Targets		to apply the kn	_		nterpretatio	n of vari	ous data from
		diffraction and					
		opment of prob		_	-	analytica	al skills
		sition of method al assessment of		pparatus knowie	eage		
		nizing the limita		ientific method	c		
	_	nizing the illinta					
	_	ng of the spatial	_	g unsultable mite	pretations		
2. Course Format	- Huilli	ing or the spatial	301130				
	Course	Topic	<u> </u>	Language of	Group	Cours	Workload
	Type			Instruction	Size	е	[hr] (On-
	''					Units	Site/SLT)
						per	
						Week	
	L	Advanced ana	-	en.	60	3	120
		methods in inc	organic				(45 / 75)
		chemistry Seminar for th	a la atura	0.00	60	2	00
	S	Seminar for th	e lecture	en.	60		90 (30 / 60)
	LC	Practical exerc	ises for	en.	2	3	90
		the lecture top		CII.			(45 / 45)
3. Module Prerequisite	S			L		ı	(10,710,
Required	None						
required	Tronc						
Recommended							
4. Module Application							
		Degree Progran	n/ Compor	nent	Compulso	ory/	Program-
					Elective	е	Related
	Semester						
	MSc Chem	<u> </u>			Compulse	ory	1 or 2
5. Requirements for EC							6. ECTS CP
Study Achievement(s)		achievable cred	dits are for	the exercises			40
Examinations and	written ex	kamination; en.					10
Examination Language 7. Cycle			2 V	Vorkload		9. Dura	tion
Winter semester	Winter an	d	0. V	TOTRIOUG		Duia	
Summer semester	summer se	11	:	300 hr		1 semes	ster
	Jannine 3						

10. Module Organization						
Instructor	The instructors at the Institute for Inorganic Chemistry					
Module Coordinator	Prof. Dr. N. Kornienko					
Organizational Unit Offering the Module	Department of Chemistry (FMNS), Institute for Inorganic Chemistry					
11. Other						
Literature:	 W. Massa Kristallstrukturbestimmung, Springer-Verlag. W. Massa, Crystal Structure determination, Springer. C. Hammond, The Basics of Crystallography and Diffraction, IUCr Publishers. W. Borchardt-Ott, H. Sowa, Kristallographie, Springer. C. E. Housecroft, A. G. Sharpe, Inorganic Chemistry, Pearson. 					

Focusing Laboratory Course Module No./ Code: MCh 20 3 UNIVERSITÄT BONN 1. Contents and Qualification Objectives Contents In this module, students are supposed to learn how to work independently on a scientific topic in an experimental or theoretical manner by conducting a selfcontained scientific project study. For this purpose, the student shall join an active scientific working group. The module's accompanying seminar imparts the basic and advanced knowledge needed for the particular topic. Extensive literature research which includes the main topic as well as related and adjacent issues shall be the basis for this. Students summarize the results of the experimental work as well as those of the literature research in a written report. They also present their results in an oral presentation. This module can prepare for a master's thesis. **Qualification Targets** Preparation for theoretical and practical scientific work during the master's thesis Independent scientific work Independent use of the possibilities of (literature) research in order to acquire full state of knowledge of a topic Ability to present own scientific work to a professional as well as a lay audience Efficient time management Information management Organizational skills Further development of communication skills 2. Course Format Workload Course Topic Language of Group Cours Type Instruction Size e [hr]1 Units per Week LC 270 1 en. S 1 30 en. 3. Module Prerequisites Required Passed modules MCh 20 1.2, MCh 20 1.3, MCh 20 1.4 and one passed elective module from WP 1 to WP 17 Recommended 4. Module Application Degree Program/ Component Compulsory/ Program-Elective Related Semester MSc Chemistry Compulsory 2 or 3 5. Requirements for ECTS Credit Points 6. ECTS CP Study Achievement(s) None **Examinations and** Presentation (40%) and report (60%); en. 10 Examination Language 8. Workload 9. Duration 7. Cycle

П

Winter semester

Instructor

Summer semester

Module Coordinator

10. Module Organization

Winter and

summer semester

 \boxtimes

The supervisor chosen by the student

300 hr

The instructors at the Department of Chemistry (FMNS) and others

1 semester

Organizational Unit Offering the Module	Department of Chemistry (FMNS) and others
11. Other	
Notes:	1: Distribution of the workload between on-site and self-study time is different for each student and is determined in consultation with the student's supervisor.

Master's Thesis Module No./ Code: MCh 20 4 UNIVERSITÄT BONN 1. Contents and Qualification Objectives Contents The topics of the master's thesis are assigned by the supervisor chosen by the **Qualification Targets** By writing the master's thesis, students should demonstrate that they are able to develop and present scientific findings in writing within a time frame of six months using the knowledge and methods of modern chemical research acquired during their previous studies. Own results should be included, discussed and evaluated in an appropriate way. The following key competences should be addressed: Ability to work independently on a scientific topic Writing skills Self-management, self-organization, self-motivation Critical thinking Ability to collect, understand, analyze and mentally connect information Efficient time management 2. Course Format Workload Topic Language of Group Cours Course Instruction Size [hr] Type e Units per Week 900¹ 1 Indepen en. dent work 3. Module Prerequisites Required Passed modules MCh 20 1.1, MCh 20 1.2, MCh 20 1.3, MCh 20 1.4, MCh 20 2 and a total of 60 CP from the module examinations for the master's program in Chemistry Recommended 4. Module Application Degree Program/ Component Compulsory/ Program-Elective Related Semester MSc Chemistry Compulsory 3 or 4 6. ECTS CP 5. Requirements for ECTS Credit Points Study Achievement(s) Oral presentation of the results of the master's thesis Examinations and Master's thesis; en. 30 Examination Language 8. Workload 9. Duration 7. Cycle Winter semester Winter and \boxtimes 900 hr 1 semester summer semester Summer semester 10. Module Organization The instructors at the Faculty of Chemistry (FMNS) Instructor **Module Coordinator** The supervisor chosen by the student Organizational Unit Department of Chemistry (FMNS) Offering the Module 11. Other Notes: 1: Distribution of the workload between on-site and self-study time is different for each student and is determined in consultation with the student's supervisor.

Elective Modules

Industrial Inorganic Molecular Chemistry

Module No./ Code: MCh 20 WP 1

1. Contents and Qualification Objectives						
Contents	Lecture and Seminar:					
Qualification Targets	 Chemical Abstracts Acquisition of advanced knowledge in the field of molecular inorganic chemistry and homogeneous catalysis In-depth understanding of the bonding, structure, reactions and industrial use of transition metal and main group element compounds Critical reading of scientific papers Gain knowledge through reading of current scientific papers Strengthen skills in both oral and written presentations Strengthen skills in crafting scientific proposals Consolidation of knowledge of spectroscopic methods and their application in molecular inorganic chemistry In-depth knowledge of molecular transition metal and main group element compounds and their application in industrial processes Advanced knowledge of analytical and spectroscopic techniques, and their application in molecular inorganic chemistry Training in special experimental techniques for the preparation and characterization of highly air- and moisture-sensitive compounds 					
2. Course Format				T	ı	
	Course Type	Topic	Language of Instruction	Group Size	Cours e Units	Workload [hr] (On- Site/ SLT)

						per Weel	ζ
	L/S	Industrial inor	ganic	en.	12	4	150
		molecular che	•				(60 / 90)
	LC	Experiments o		en.	2-3	4	150
		lecture/semina	ar topics				(60 / 90)
3. Module Prerequisites	3						
Required	Passed mo	dule MCh 20 1.:	1				
Recommended							
4. Module Application							
		Degree Progran	n/ Compor	nent	Compulso	ry/	Program-
					Elective	9	Related
							Semester
	MSc Chem	•			Elective	2	2 or 3
•	Requirements for ECTS Credit Points 6. ECTS C						
Study Achievement(s)		n of lab experim	-				
		on (oral), partici		discussions, sho	rt quizzes		10
Examinations and		examination; en	•				
Examination Language	Final writt	en paper; en.	0.14				••
7. Cycle	T		8. V	Vorkload	5	9. Dura	ation
Winter semester ☐ Summer semester ☑	Winter and summer se		3	300 hr		1 seme	ester
10. Module Organizatio	n						
Instructor	Prof. Dr. C	. Lu und JunPro	of. Dr. A. B	ismuto			
Module Coordinator	Prof. Dr. C	. Lu und JunPro	of. Dr. A. B	ismuto			
Organizational Unit	Departme	nt of Chemistry	(FMNS), In	stitute for Inorg	anic Chemis	try	
Offering the Module							
11. Other							
Literature:	J. F.Hartwi	g, Organotransi	tion Metal	Chemistry, Univ	v. Science Bo	oks	
		n, R. A. Kemp, N	1odern Asp	ects of Main Gr	oup Chemist	ry (Acs	Symposium
	Series, Bar	•					
	L. Que, Jr. (ed) <i>Physical Methods in Bioinorganic Chemistry</i> , Univ. Science Books A. Goodman <i>Why Bad Presentations Happen to Good Causes</i> , e-book						
	A. Goodma	an <i>Why Bad Pre</i> s	sentations	Happen to Goo	d Causes, e-l	oook	
	Literature	readings will be	assigned v	weekly through	out the cours	se.	

Supramolecular Chemistry

Module No./ Code: MCh 20 WP 2

				OTATV CTV.	JI I / \ I	DOM
1. Contents and Quali	fication Obje	ectives				
Contents		ical development of the fi	eld of supramol	ecular chemi	istry	
		and definitions	•		,	
	Non-c	ovalent interactions				
	Chara	cterization of supramolecu	lar binding phe	nomena		
		g constants and other the				
		tical tools	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	=	nition of ionic substrates -	- cations, anions	s, and ion pa	irs	
	_	nition of neutral substrate		· ·		inding
	motifs					- 0
	Recog	nition of chiral substrates				
	_	ssembly processes – basic	considerations			
		ssembly via hydrogen bond				
		ination-driven self-assemb				
		e patterning	,			
		molecular control of reacti	ivity			
	-	anes, catenanes, knots, an		chines		
	 Dendr 					
	Applic	ations as sensors				
Qualification Targets	Basic	knowledge of the concepts	of supramolec	ular chemist	ry in thec	ory and
_	practi	ce	•		•	,
	Knowl	edge of the different type	s of non-covaler	nt interaction	ns and th	eir
		rate application in molecu				
	• Advan	ced laboratory practices				
	• Advan	ced knowledge of modern	analytical tech	niques		
	• Writte	en documentation of scien	tific results			
	 Efficie 	nt time management				
	 Inform 	nation management				
	 Organ 	izational skills				
	• Furthe	er training of experimental	skills			
	• Furthe	er training of observation s	skills			
	• Devel	opment of problem solving	g skills			
	• Devel	opment of analytical skills,	e.g. interpretat	ions of expe	rimental	findings
		rning supramolecular phei				
		er development of decision	_			
		er training of accuracy and				
		er development of commu				
	• Furthe	er training of (self-) critical	assessment			
2. Course Format						
	Course	Topic	Language of	Group	Cours	Workload
	Type		Instruction	Size	e	[hr]
					Units	
					per	
	1.10	Commence	_	20	Week	430
	L/S	Supramolecular	en.	30	4	120

LC

chemistry

Experiments on

lecture/seminar topics

en.

(60 / 60)

180

(90 / 90)

3. Module Prerequisites						
Required	Passed module MCh 20 1.2	Passed module MCh 20 1.2				
Recommended						
4. Module Application						
	Degree Program	n/ Component	Compulsory/	Program-		
			Elective	Related		
				Semester		
	MSc Chemistry		Elective	2 or 3		
5. Requirements for ECT	S Credit Points			6. ECTS CP		
Study Achievement(s)	Successful completion of la	ab course				
Examinations and	Final oral examination; en.			10		
Examination Language						
7. Cycle		8. Workload	9. Dui	ıration		
Winter semester ☐ Summer semester ☑	Winter and summer semester	300 hr	1 sem	nester		
10. Module Organizatio	n					
Instructor	Prof. Dr. A. Lützen, Dr. SS	. Jester, Dr. L. von Krbek				
Module Coordinator	Prof. Dr. A. Lützen					
Organizational Unit	Department of Chemistry	(FMNS), Kekulé Institute o	f Organic Chemist	ry and		
Offering the Module	Biochemistry					
11. Other						
Literature:	J. W. Steed, J. L. Atwood, S	Supramolecular Chemistry,	John Wiley & Sor	is.		
	Further recommended lite	rature will be announced	in the courses.			

Advanced Quantum Chemistry Methods

Module No./ Code: MCh 20 WP 4

1. Contents and Qualification Objectives

Contents

The module addresses students with strong interest in the theoretical treatment of molecules, molecular properties and chemical reactions. After the recapitulation of HF-theory and the introduction of fundamental new concepts for the treatment of the N-electron problem, the standard methods of correlated ab initio quantum chemistry (CI, MP, CC) are discussed. The numerical accuracy of the various methods will be documented using benchmark results for small molecules. Necessary steps for implementation of the methods are shown using examples and the algorithmic efficiency of different software implementations and special treatments for large systems are demonstrated. Other key topics are density functional theory and approximate functionals, their properties and limits as well as non-covalent interactions. Introduction to further topics, e.g. quantum dynamics, treatment of heavy elements, and electronically excited states. The associated practical programming course provides the opportunity for preparing a simple HF- and MP2 program yielding insight into the practical aspects and deepening the theoretical knowledge from the lecture. In its second part, various typical chemical problems (structure, thermochemistry, spectroscopy) will be treated with standard quantum chemistry codes.

Contents:

- Recapitulation of Hartree-Fock theory
- Efficient methods for large systems
- Qualitative discussion of the electron correlation problem
- Second quantization and diagrammatic techniques
- Wave function based correlation methods (CI, MP, CC)
- Basis set extrapolation and explicit correlation
- Relativistic effects and effective potentials
- Density functional theory
- Theoretical spectroscopy and molecular properties
- Electronically excited states, multi-reference methods
- Quantum dynamics
- Non-covalent interactions and dispersion corrections

Qualification Targets

- Detailed knowledge of methods and concepts in quantum chemistry for the quantitative treatment of the electronic structure of atoms and molecules
- Introduction into the programming language Fortran and implementation of quantum chemical methods in computer programs
- Practical calculations and interpretation of quantum chemical treatments
- Preparation for independent work in the area of quantum chemistry
- Learning competence
- Methodological competence
- Self-competence

2. Course Format							
	Course	Topic	;	Language of	Group	Cours	Workload
	Type			Instruction	Size	е	[hr] (On-
						Units	Site/SLT)
						per	
						Week	
	L	Quantum cher	mistry II	en.	20	2	60 (30 / 30)
	S	Seminar for th	e lecture	en.	20	2	80 (30 / 50)
	LC	Experiments of lecture/semin		en.	1	5	160 (75 / 85)
3. Module Prerequisite	ς	recture/serrin	ui topics				(13 / 63)
Required		odule MCh 20 1.	 Д				
Required	T usseu me	saule Wien 20 1.	- r				
Recommended							
4. Module Application							
		Degree Program/ Component Compulsory/ Programs					Program-
					Elective		Related
							Semester
	MSc Chem	•			Elective		2 or 3
5. Requirements for EC	1						6. ECTS CP
Study Achievement(s)		l completion of t		rse and seminar	presentatio	n	
Examinations and	Final oral	examination; en					10
Examination Language			0.14				
7. Cycle			8. V	Vorkload	,	9. Durat	tion
Winter semester ☐ Summer semester ☐	Winter an summer s	1 1	\$	300 hr		1 semes	ter
10. Module Organization	n						
Instructor	Prof. Dr. S	. Grimme, Dr. A.	Hansen				
Module Coordinator	Prof. Dr. S	Prof. Dr. S. Grimme					
Organizational Unit Offering the Module	Departme	Department of Chemistry (FMNS), Institute of Physical and Theoretical Chemistry					hemistry
11. Other							
Literature:	A. Szabo,	N. S. Ostlund, M	odern Qua	ntum Chemistry			
	T Helgake	r, P. Jørgensen, J	I. Olsen, M	olecular Electroi	nic Structure	Theory,	, Wiley.

Surface Science and Electrochemistry

Module No./ Code: MCh 20 WP 5

1. Contents and Qualif	fication Obje	ectives					
Contents		nodynamics of interfaces a	nd surfaces				
Contents							
		raser parent and description processes					
		ical binding to surfaces	-4-1				
		anism of heterogeneous co	=				
		imental methods for surfa-	ce analysis				
	-	growth and nucleation					
		ls of the electric double la					
		ochemical kinetics, Marcus	s theory				
		ocatalysis					
		ochemical methods					
	• Electr	ochemical in situ characte	rization				
	Techr	ical applications of proces	ses at interfaces	;			
Qualification Targets	• Prope	rties, concepts, and mode	ls in surface che	mistry and e	electroch	emistry.	
	• Exper	imental methods for the ir	nvestigation of s	urfaces and	electroc	hemical	
	interf	aces and related chemical	processes.				
	• Unde	rstanding and applying cor	ncepts and mode	els			
	Condi	ucting experimental invest	igations				
	Basic	understanding of modern	research literatu	ıre			
2. Course Format							
	Course	Topic	Language of	Group	Cours	Workload	
	Type		Instruction	Size	е	[hr] (On-	
					Units	Site/SLT)	
					per		
					Week		
	L	Surface science and	en.	30	3	135	
		electrochemistry				(45 / 90)	
	S	Seminar for the lecture	en.	30	1	45	
						(15 / 30)	
	LC	Experiments on	en.	2	4	120	
		lecture/seminar topics				(60 / 60)	
3. Module Prerequisite	es						
Required	Passed mo	odule MCh 20 1.3					
Recommended							
4. Module Application	<u> </u>						
		Degree Program/ Compor	nent	Compulso	orv/	Program-	
						Related	
						Semester	
	MSc Chemistry Elective					2 or 3	
5. Requirements for E						6. ECTS CP	
Study Achievement(s)	_	s of attendance for the lab	course and lab	reports			
Examinations and	Final oral	Final oral examination; en.				10	
Examination Language							

7. Cycle		8. Workload	9. Duration			
Winter semester	Winter and	300 hr	1 semester			
Summer semester	summer semester	300 III	1 Semester			
10. Module Organization	on					
Instructor	Prof. Dr. M. Sokolowski					
Module Coordinator	Prof. Dr. M. Sokolowski					
Organizational Unit	Department of Chemistry (FMNS), Institute of Physical and Theoretical Chemistry					
Offering the Module						
11. Other						
Literature:	G. Attard, C. Barnes, Surfa	ces, Oxford Univ. Press.				
	K. W. Kolasinski, Surface S	cience: Foundations of Cat	alysis and Nonoscience, Wiley.			
	W. Schmickler, E. Santos, I	nterfacial Electrochemistry	y, Springer.			
	D. Pletcher, Southampton	Electrochemistry Group, Instrumental Methods in				
	Electrochemistry, Elsevier Science & Technology.					
	C. H. Hamann, A. Hamnett	, W. Vielstich, Electrochen	nistry, Wiley-VCH.			

Chemical Biology / Medicinal Chemistry

Module No./ Code: MCh 20 WP 6

1. Contents and Qualification Objectives

Contonto	Theorem							
Contents	Theory:	:						
	-	Synthesis and exploitation of drugs						
	Interaction of drugs with target proteins, functional in vitro assays							
	-	esis, structure and applica			des and p	roteins		
	_	nic chemistry of enzyme-ca	talyzed reaction	S				
	 Glyco 	chemistry						
	 Lipids 	and chemistry of membra	nes					
	• Strate	gies for drug research						
	Cataly	tic antibodies						
	Comb	inatorial chemistry and bid	ochemistry					
	Phage	and ribosome display	•					
	Aptan							
	-	omal RNA technologies						
		els concerning the origin of	life					
	Lab course		-					
		c. action analysis of drugs wit	h target protein	3				
		olymerase/PCR primer des		,				
		cs of enzyme-catalyzed rea	-					
	HPLC/		actions					
		nift assays						
		escence Resonance Energy	Transfor					
		= :	Hallstei					
		ional enzyme assays						
	-	esis of a drug						
0 1:6: .: -		ion of a pharmacologically						
Qualification Targets		ledge of the synthesis and	-					
		ledge of current methods	_	emistry, cor	nbinatori	al chemistry,		
		cinal chemistry and chemic						
	• Applic	cation of the concepts to n	nodern biologica	l and bioted	hnologic	al problems		
2. Course Format		1	1			1		
	Course	Topic	Language of	Group	Cours	Workload		
	Type		Instruction	Size	е	[hr] (On-		
					Units	Site/ SLT)		
					per			
					Week			
	L	Medical chemistry and	en.	6	3	90		
		chemical biology			1	(45 / 45)		
	S	Seminar for the lecture	en.	6	0.5	20		
						(7.5 / 12.5)		
	LC	Experiments on	en.	2	5.5	190		
		lecture/seminar topics				(82.5 /		
						107.5)		
3. Module Prerequisite	es							
Required	Passed mo	odule MCh 20 1.2						
Recommended								

4. Module Application							
	Degree Progran	Compulsory/ Elective	Program- Related Semester				
	MSc Chemistry		Elective	2 or 3			
	B. Sc. Molecular Biomedici	ine	Elective				
5. Requirements for ECT	TS Credit Points			6. ECTS CP			
Study Achievement(s)	Lab reports						
Examinations and Examination Language	Written examination; en.	<u> </u>					
7. Cycle	8. Workload 9. Dura			ration			
Winter semester ☐ Summer semester ⊠	Winter and summer semester	300 hr	300 hr 1 semester				
10. Module Organizatio	n						
Instructor	Prof. Dr. C. E. Müller, Prof.	Prof. Dr. C. E. Müller, Prof. Dr. M. Gütschow, Prof. Dr. M. Famulok, Prof. Dr. G. Mayer					
Module Coordinator	Prof. Dr. C. E. Müller						
Organizational Unit Offering the Module	Department of Molecular Biomedicine (FMNS); Department of Pharmacy (FMNS)						
11. Other							
Literature:	A. Miller, J. Tanner, Essentials of Chemical Biology: Structure and Dynamics of Biological Macromolecules, Wiley. G. L. Patrick, An Introduction to Medicinal Chemistry, Oxford University Press.						

Organometallic Chemistry

Module No./ Code: MCh 20 WP 7

1. Contents and Qualification Objectives

1. Contents and Qualification Objectives							
Qualification Targets 2 Course Format	Application composed comp	ssion of reaction mechanism ssion of essential aspects o application of catalytic read ssion of diversity oriented sons	ms with respect of sustainability fortions. Feed stock synthesis in the off ractice: Reaction optimization determination off omechanisms organometallic ref f complex organ open-shell intermed tific results skills skills e.g. application erstanding of co	to selectivitor the large ok substrate context of context of context of context of context of context on the context of context of context of concepts of concepts	etyscale and s. atalyst co utomated eric ratios aechanism	d industrial- ontrolled by HPLC as and their	
2. Course Format	Course	Tonic	Language of	Group	Cours	Workload	
	Course Type	Topic	Language of Instruction	Group Size	Cours e Units per Week	Workload [hr] (On- Site/ SLT)	
	L	Organometallic chemistry	en.	30	4	150 (60 / 90)	
	LC	Experiments on lecture topics	en.	1–5	6	150 (90 / 60)	
3. Module Prerequisites Required	,	odule MCh 20 1.2					
Required	- asseu 1110	dule IVICII ZU 1.Z					

Recommended

4. Module Application							
	Degree Progran	Compulsory/ Elective	Program- Related Semester				
	MSc Chemistry	MSc Chemistry Elective					
5. Requirements for ECT	S Credit Points			6. ECTS CP			
Study Achievement(s)	Lab report						
Examinations and Examination Language	Written examination; en.	10					
7. Cycle		8. Workload 9. Dura					
Winter semester ☐ Summer semester ⊠	Winter and summer semester	300 hr	1 semester				
10. Module Organizatio	n						
Instructor	Prof. Dr. A. Gansäuer						
Module Coordinator	Prof. Dr. A. Gansäuer						
Organizational Unit	Department of Chemistry	(FMNS), Kekulé Institute o	f Organic Chemist	ry and			
Offering the Module	Biochemistry						
11. Other							
Literature:	L. S. Hegedus, B. C. G. Söderberg, <i>Transition Metals in the Synthesis of Complex</i>						
	Organic Molecules, University Science Books.						
	Further recommended lite	rature will be announced	in the courses.				

Molecular Dynamics of Time Dependent Phenomena

Module No./ Code: MCh 20 WP 8

1. Contents and Qualification Objectives

1. Contents and Quali	tication Obje	ectives					
Contents Contents Qualification Targets	Mono prope pressus system polari of the vibrat matte Quante equat linear factor bound moleculary weloci disper ampli interfure freque Ultraf locked laser. correl photo	concatomic Systems: Newtonian dynamics, integrational algorithms, operties; thermodynamical state control: constant temperature, constant essure; free energy calculations (thermodynamical integration); molecular stems: intramolecular forces, long range forces; advanced methods: larizable force fields, molecular dynamics simulations, entropy, reactions, state the art methods and tools are used to calculate correlation functions, prational spectra for the structure of systems in most cases of condensed atter (e.g. liquids and solvent effects). Frantum Dynamics: numerical propagation of the time-dependent Schrödinger usation in the absence/presence of electric fields, semi-classical approach to ear and non-nonlinear optical spectroscopy, time-dependent Franck-Condon stor, transient absorption and stimulated emission, bound-to-bound and und-to-free transitions, Femto-chemistry and photodissociation of triatomic objecules/ions. Frafast Laser Spectroscopy: properties of ultrafast optical pulses, phase locity versus group velocity, phase delay versus group delay, phase velocity persion versus group velocity dispersion, higher-order dispersions, spectral pultude and spectral phase, electric field autocorrelation function, erferometric and background-free intensity autocorrelation function, quency-resolved optical gating, pump-probe spectroscopy. Frafast Laser Laboratory: conducting experiments using a Kerr-lens mode-sked femtosecond Ti:Sapphire laser pumped by a frequency-doubled Nd:YVO4 er. Measuring the group delay of optically transmissive materials using a rrelation pump-probe experiment. Learning the operating principles of lasers, oton detectors, lock-in amplifiers and opto-mechanical components.					
Quantitation rangets	 Advanced knowledge of modern theoretical and experimental methods of time dependent spectroscopy, wave packet dynamics and molecular dynamics Understanding of the interaction between theory and experiment Independent performance and analysis of ultrafast laser experiments Application of knowledge to solve critically theoretical and practical problems, e.g. programming and oral presentations 						
2. Course Format							
	Course Type	Topic	Language of Instruction	Group Size	Cours e Units per Week	Workload [hr] (On- Site/ SLT)	
	L	Molecular dynamics simulations, quantum dynamics	en.	30	2	60 (30 / 30)	
	S	Seminar on lecture topics	en.	30	2	80 (30 / 50)	
	LC	Experiments on lecture topics	en.	3	4	160 (60 / 100)	

3. Module Prerequisites							
Required	Passed module MCh 20 1.3	Passed module MCh 20 1.3					
Recommended							
4. Module Application							
	Degree Progran	n/ Component	Compulsory/	Program-			
			Elective	Related			
	MSc Chemistry		Elective	2 or 3			
5. Requirements for EC	TS Credit Points			6. ECTS CP			
Study Achievement(s)	Lab report	Lab report					
Examinations and	Final oral examination; en. 10						
Examination Language							
7. Cycle	8. Workload 9. Duration			ration			
Winter semester □ Summer semester □	Winter and summer semester 300 hr 1 semester						
10. Module Organizatio	10. Module Organization						
Instructor	Prof. Dr. B. Kirchner, Prof. Dr. P. Vöhringer						
Module Coordinator	Prof. Dr. B. Kirchner, Prof. Dr. P. Vöhringer						
Organizational Unit	Department of Chemistry (FMNS), Institute of Physical and Theoretical Chemistry						
Offering the Module							
11. Other							
Literature:	D. Frenkel, B. Smit, Unders	standing Molecular Simula	tion, Acad. Press.				
	M. P. Allen, D. J. Tildesley,	Computer Simulation of Li	<i>quids</i> , Clarendon	Press.			
	G. Fleming, Chemical Applications of Ultrafast Spectroscopy, U. S. Oxford Univ. Press.						
	S. Mukamel, Principles of I	Nonlinear Optical Spectros	<i>copy,</i> Oxford Univ	. Press.			

Macromolecular Chemistry

Module No./ Code: MCh 20 WP 9

1. Contents and Qualification Objectives

Contents

Theory:

- Polymerizations, molecular weight and its determination
- Chain conformation, rubber elasticity
- Phase transitions in polymers (Tm, Tg), viscoelasticity
- Step growth polymerizations (polyesters, polyamides, polysiloxanes, polyurethanes, dendrimers, conjugated polymers)
- Polycondensation kinetics
- Controlled reactions
- Radical polymerization, homopolymers (kinetics, molecular weight), chain transfer, copolymers, emulsion polymerization, controlled radical polymerization
- Anionic polymerization, polyacrylates
- Characterization (viscosity, GPC, osmometry, light scattering, MALDI-TOF spectrometry, NMR)
- Cationic polymerization
- Polyolefins
- Metathesis polymerization (ROMP, ADMET)
- Crystallinity in polymers
- Supramolecular polymers
- Processing and recycling
- Industrial aspects of polymer chemistry

Lab course:

Selection of experiments on the following topics:

- Radical bulk polymerization
- Molecular weight and transfer agents
- Emulsion polymerization
- Controlled radical polymerization
- Polycondensation, polyaddition
- Viscosity
- Gel permeation chromatography (GPC)
- Phase transitions in polymers (DTA, DSC)
- Rubber elasticity

	Further recommended literature will be announced in the courses.								
Literature:	G. Odian, <i>Principles of Polymerization</i> , Wiley Interscience. S. Koltzenburg, M. Maskos, O. Nuyken, <i>Polymere</i> , Springer Spektrum.								
11. Other									
Offering the Module	Biochemis	•					,		
Organizational Unit			(FMNS). Ke	ekulé Institute of	Organic Ch	emistr	v and		
Module Coordinator	Prof. Dr. S.		TICIC MICHAI	iut					
Instructor		Höger, Dr. Gab	riele Richa	rdt					
Summer semester 10. Module Organization	summer se		3	300 hr	:	1 sem	ester		
7. Cycle Winter semester	Winter and	1	8. V	Vorkload	9). Dur	auon		
Examination Language			0 11	Vouldes d		<u> </u>	ation .		
Examinations and	Written ex	amination; en.				\neg	10		
Study Achievement(s)	Lab report	S							
5. Requirements for ECT	S Credit Po	oints					6. ECTS CP		
	MSc Chem	istry	•		Elective	غ	2 or 3		
		Degree Progran	n/ Compon	nent	Compulso Elective	-	Program- Related Semester		
4. Module Application		D	-1.6		Carry		Duan		
Recommended									
Required	Passed mo	dule MCh 20 1.2	2						
3. Module Prerequisites									
		topics				·	(60 / 90)		
	LC	chemistry Experiments o	n lecture	en.	2–3	4	(60 / 90) 150		
	L/S						150		
	Туре					e Unit per Wee	[hr] (On- Site/ SLT)		
	Course	Topic	;	Language of	Group	Cour	s Workload		
2. Course Format	- Turtin	or (se	ii / circicai	4336331116116					
		er development er training of (se							
		er training of acc er development							
		er development		-					
			-	nthesis and cha	racterizatior	of po	lymers		
		•		e.g. application	-				
		opment of probl							
		er training of ob							
	_	izational skills er training of exp	perimental	skills					
		ease							
		- more time management							
	• Writte	Written documentation of scientific results							
	Advanced laboratory practices								
	 Knowledge of synthesis, properties and applications of polymers Knowledge of modern methods to characterize polymers 								
Qualification Targets	• Knowl	edge of synthes	is, propert	ies and applicati	ions of polvr	ners			

Inorganic Materials

Module No./ Code: MCh 20 WP 10

1. Contents and Qualification Objectives

Contents

Basics of inorganic materials:

metals, semiconductors, dielectric solids, ceramics, glass, nanomaterials; relation between structure, chemical bonding, and properties; electronic structure of solids, thermodynamics of heterogeneous equilibria (solid-liquid-gaseous); solids with homogeneity range; electronic structure of ions of the d- and f-block.

Synthesis of solids:

solid state reactions, sol-gel synthesis, hydrothermal synthesis, crystallization from the gas phase (solid-gas reactions, chemical vapor transport), microwave assisted syntheses, synthesis of thermodynamically metastable solids, ways to synthesize nano-materials.

Characterization:

diffraction methods; optical spectroscopy (UV/VIS, IR, Raman); electron spectroscopy (EDX, EELS), nuclear magnetic resonance; magnetic measurements; optical characterization (optical microscopy, electron microscopy).

Materials properties/application:

solid ionic conductors and their application in fuel cells; functional ceramics with dielectric and magnetic properties (piezoelectrics, spintronics, etc.) and their application in electronic devices; heterogeneous catalysis (e.g. Fischer-Tropsch, Haber-Bosch, three-way catalyst); optical properties and application of solids as color and luminescent pigments.

Lab course:

"demanding" solid state syntheses (air and/or moisture sensitive compounds, well-defined reaction atmosphere, metastable solids):

- Chemical vapor transport experiment incl. computation of heterogeneous equilibria and transport rate
- Solid state reactions followed by phase analysis of products by diffraction methods and spatially resolved analysis using the electron microscope
- Sol-gel synthesis of thin films on a substrate and determination of their crystal structure and micro structure as a function of temperature of synthesis
- Synthesis of nano-scale crystals and their characterization by diffraction and electron microscopic methods

Qualification Targets

- Acquiring advanced knowledge of synthesis, characterization, structure, properties and applications of inorganic materials
- Synthesis and characterization of inorganic materials
- Ability to present scientific results appropriately in oral and written form

2. Course Format							
	Course	Topic	:	Language of	Group	Cours	Workload
	Туре			Instruction	Size	е	[hr] (On-
						Units	Site/SLT)
						per	
						Week	
	L	Inorganic mate	erials	en.	20	4	120
	S	C	- 1		20		(60 / 60)
	3	Seminar for th	e lecture	en.	20	1	40 (15 / 25)
	LC	Experiments o	n lecture	en.	2	4	140
		topics					(60 / 80)
3. Module Prerequisites	3						
Required	Passed mo	odule MCh 20 1.	1				
Recommended							
4. Module Application							
		Degree Program/ Component Compulsory/					
		Elective					
	Semeste						Semester
	,						2 or 3
5. Requirements for ECT	S Credit P	oints					6. ECTS CP
Study Achievement(s)	Lab report						
Examinations and	Written ex	kamination; en.					10
Examination Language							
7. Cycle			8. V	Vorkload	9	9. Durat	ion
Winter semester ⊠ Summer semester □	Winter and summer se		3	300 hr		1 semes	ter
10. Module Organizatio	n						
Instructor	Prof. Dr. R	. Glaum, Prof. D	r. J. Beck, [Dr. W. Assenma	cher, Dr. J. D	aniels	_
Module Coordinator	Prof. Dr. R	. Glaum					
Organizational Unit	Department of Chemistry (FMNS), Institute for Inorganic Chemistry						
Offering the Module							
11. Other							
Literature:			-	l Its Applications	-		
	L. E. Smart, E. A. Moore, Solid State Chemistry, Yonsei Univ. Books.						
	C. E. Housecroft, A. G. Sharpe, <i>Inorganic Chemistry</i> , Pearson.						
1	B. N. Figgi	B. N. Figgis, M. A. Hitchman, <i>Ligand field theory and its applications</i> , Wiley-VCH.					

Biophysical Chemistry

Module No./ Code: MCh 20 WP 11

1. Contents and Qualification Objectives

Contents Molecules of the Cell I:

water, ions, lipids, nucleic acids, proteins, saccharides.

Structure of Cells: Prokaryotes and eukaryotes.

Molecules of the Cell II - Proteins:

physical interactions in proteins (electrostatics incl. Debye-Hückel theory, dipolar interactions, steric repulsion, hydrogen bonding, hydrophobic effect), simulation of protein structure and dynamics (MD-simulation), protein folding, specific binding/molecular recognition, molecular crowding (statistical model, impact on binding constants, structural changes).

Molecules of the Cell III - RNA:

structure and function of ribozymes: Mechanism and impact of metal ions. structure and function of riboswitches: switching mechanisms and impact on gene expression. Small RNAs.

Molecules of the Cell IV - Biomembranes:

hydrophobic effect, self-aggregation and fluid-mosaic-model, membrane potentials (diffusion potential, electro-diffusion equation, Donnan potential, Goldmann equation), molecular foundation of the selectivity of ion channels, conductibility of active membranes.

Methods of Biophysical Chemistry:

modern thermodynamical methods, modern microscopic and spectroscopic techniques, crystal structure analysis, key experiments in biophysical chemistry, exemplary application of the concepts presented in the lectures.

Lab Course in Biophysical Chemistry:

optical and functional microscopy, thermodynamic techniques, analysis of biomacromolecules using spectroscopic methods.

Qualification Targets

- In-depth knowledge of biophysical chemistry
- Understanding life processes in physicochemical terms
- Application of the knowledge gained to the solution of theoretical and practical problems
- Independent implementation and evaluation of experiments using the methods of biophysical chemistry

2. Course Format

2. Course : oriniae						
	Course	Topic	Language of	Group	Cours	Workload
	Type		Instruction	Size	е	[hr] (On-
					Units	Site/ SLT)
					per	
					Week	
	L	Biophysical chemistry	en.	20	2	60
						(30 / 30)
	S	Seminar for the lecture	en.	20	2	90
						(30 / 60)
	LC	Experiments on lecture	en.	2	4	150
		topics				(60 / 90)

3. Module Prerequisites

Required	Passed module MCh 20 1.3
Recommended	

4. Module Application					
	Degree Progran	Degree Program/ Component			
	MSc Chemistry		Elective	2 or 3	
5. Requirements for ECT	TS Credit Points			6. ECTS CP	
Study Achievement(s)	Lab reports and seminar p	resentation			
Examinations and Examination Language	Final oral examination; en.			10	
7. Cycle		8. Workload	9. Duration		
Winter semester ⊠ Summer semester □	Winter and summer semester	300 hr	1 semester		
10. Module Organizatio	n				
Instructor	Prof. Dr. U. Kubitscheck, P	rof. Dr. R. Merkel			
Module Coordinator	Prof. Dr. U. Kubitscheck				
Organizational Unit Offering the Module	Department of Chemistry	(FMNS), Institute of Physic	cal and Theoretica	l Chemistry	
11. Other					
Literature:	J. Kuriyan, B. Konforti, D. Wemmer, <i>The Molecules of Life: Physical Principles and Cellular Dynamics</i> , Garland Pub. D. Klostermeier, M.G. Ruldoph, <i>Biophysical Chemistry</i> , Apple Academic Press Inc. Additional current literature will be provided				

Theoretical Methods for Condensed Matter

Module No./ Code: MCh 20 WP 12

1. Contents and Qualification Objectives

Contents

Non-covalent interactions (NCI) between atoms and molecules (also misleadingly referred to as "non bonding" or "weak" interactions) are essential for the formation of condensed matter (e.g. liquids or molecular crystals). An important feature differentiating this from covalent bonds is the additive and thus cumulative character of the non-covalent interactions. Thus individually small contributions can add up to high overall binding energies in medium-sized systems. Modern quantum chemical methods of wave-function theory or density-functional theory are able to quantitatively describe these NCIs and thus open up a theoretical approach to a large number of material properties.

In the first part of the course, the theoretical fundamentals of the NCIs are presented, and practical aspects of their calculation are discussed for various systems and illustrated in the practical course for typical examples.

NCIs are particularly important in liquids and for solvent effects, which are preferably treated with molecular dynamics simulations. Concrete concepts for the description of the NCIs in such simulations (meaning from force fields to "on the fly" calculated potentials) are dealt with in the second part. In the course of such calculations, the multiplicity of data that is contained in the so-called trajectories must be analyzed. In the practical course, liquid systems and the corresponding work steps are to be understood based on specific examples.

The quantum-chemical description of crystalline solids and their surfaces differs fundamentally from the treatment of molecular systems due to the translation symmetry. Both the Hamilton operator and the wave function must fulfill periodic boundary conditions. As a consequence, there are in principle infinite interaction integrals, and the total wave function would have to be composed of infinite crystal orbitals. In the third part of the lecture, the theoretical foundations of the approaches are presented that solve these problems. The concept of reciprocal space is introduced for this purpose. The number of orbitals can then be reduced to a finite number by selecting specific points in the irreducible Brillouin-zone. As basic functions, Bloch functions are used either from plane waves or atom-centered functions, resulting in different approaches for the approximate calculation of the finite grid sums. In the practical course, the students will be using the crystal orbital program CRYSTAL to treat selected solids and surfaces. Atomization energies, lattice parameters, band structures as well as adsorption structures and energies are calculated.

Qualification Targets

- Advanced knowledge of quantum chemical methods to investigate crystals and liquids
- Practical application and interpretation of quantum chemical calculations of condensed matter
- Preparation for own work in the field of theoretical chemistry of condensed matter
- Learning competence
- Methodological competence
- Self-competence

2. Course Format							
	Course	Topic	;	Language of	Group	Cours	Workload
	Туре			Instruction	Size	е	[hr] (On-
						Units	Site/SLT)
						per	
						Week	
	L/S	Theoretical ch	-	en.	20	3	120
		of solid state r					(45 / 75)
	LC	Practical exerc		en.	20	6	180
		the lecture top	oics				(90 / 90)
3. Module Prerequisites	,						
Required	Passed mo	odule MCh 20 1.	4				
Recommended							
4. Module Application							
		Degree Progran	n/ Compor	nent	Compulso	ry/	Program-
					Elective	2	Related
							Semester
	MSc Chem	istry			Elective	9	2 or 3
5. Requirements for ECT	TS Credit P	oints					6. ECTS CP
Study Achievement(s)	Lab report	S					
Examinations and	Final oral 6	examination; en	•				10
Examination Language							
7. Cycle			8. V	Vorkload	9	9. Durat	tion
Winter semester 🛛	Winter an	d . 🗆		300 hr		1 semes	tor
Summer semester	summer se	emester \Box	,	500 111		1 Seilles	otei
10. Module Organizatio	n						
Instructor	Prof. Dr. T	. Bredow, Prof. I	Or. B. Kirch	ner, Prof. Dr. S.	Grimme		
Module Coordinator	Prof. Dr. T	. Bredow	- 				
Organizational Unit	Departme	nt of Chemistry	(FMNS), In	stitute of Physic	al and Theo	retical C	hemistry
Offering the Module	, , , , , , , , , , , , , , , , , , , ,						
11. Other							
Literature:		, The Theory of I		·			
		R. Hoffmann, R. Dronskowski, Computational Chemistry of Solid State Materials: A					
		Material Scientis			d Others, W	iley-VCH	l .
		n, Molecular Mo	•				
	C. Kittel, E	inführung in die	Festkörpe	<i>rphysik,</i> Oldenbo	ourg.		

Synthesis and Retrosynthesis

Module No./ Code: MCh 20 WP 13

				UNIVERS	SHAL	BONN
1. Contents and Qual	ification Obje	ectives				
Contents	 Applic composition Discussion Select process Applic 	synthesis and synthetic stration of modern synthetic cation of modern synthetic cunds ssion of complex synthese ed modern concepts (i.e. sses, multi component rea cation of modern NMR me conal compounds	c methods for the s of natural pro symmetry, intra actions, biomim	ducts and dru amoleculariza etic synthesis	ugs ation, tan s)	dem
	chrom • 2D and • Intera	et aspects of laboratory patography, GC, HPLC, read 3D determination of corctive formulation of retronal compounds	ction optimizat nplex organic c	ion ompounds by	/ NMR sp	ectroscopy
Qualification Targets	 Under natura Advan Advan assign Writte Efficie Inform Organ Furthe Develor for an Furthe Furthe Furthe Furthe 	ed knowledge of modern restanding and evaluation of all products aced laboratory practices aced knowledge of NMR syment en documentation of scierant time management attion management izational skills are training of experimentation of problem solvin opment of analytical skills independent design of syer development of decisioner training of accuracy and are development of communicationing of (self-) critical	pectroscopic tec ntific results al skills skills g skills , e.g. application thetic routes for making skills d responsibility unication skills	et syntheses of the chairman is sufficient to the chairman is suff	2D and 3I	D structural
2. Course Format	1					
	Course Type	Topic	Language of Instruction	Group Size	Cours e Units per	Workload [hr] (On- Site/ SLT)

Course	Topic	Language of	Group	Cours	Workload
Type		Instruction	Size	е	[hr] (On-
				Units	Site/ SLT)
				per	
				Week	
L/S	Organic synthesis and	en.	30	6	180
	retrosynthesis				(90 / 90)
LC	Experiments on	en.	1–5	3	120
	lecture/seminar topics				(45 / 75)

3. Module Prerequisites						
Required	Passed module MCh 20 1.2	2				
Recommended						
4. Module Application			T .	Γ		
	Degree Progran	n/ Component	Compulsory/	Program-		
			Elective	Related		
				Semester		
	MSc Chemistry		Elective	2 or 3		
5. Requirements for ECT	TS Credit Points			6. ECTS CP		
Study Achievement(s)	Lab reports and seminar p	resentation				
Examinations and	Written examination; en.			10		
Examination Language						
7. Cycle		8. Workload	9. Dui	ration		
Winter semester	Winter and	200 h.:	4			
Summer semester	summer semester	300 hr	1 sem	nester		
10. Module Organizatio	n					
Instructor	Prof. Dr. D. Menche					
Module Coordinator	Prof. Dr. D. Menche					
Organizational Unit	Department of Chemistry	(FMNS), Kekulé Institute o	f Organic Chemist	ry and		
Offering the Module	Biochemistry					
11. Other	11. Other					
Literature:	Recommended literature	will be announced in the co	ourses.			

Modern Methods to Elucidate Structure-Function-Relationships in Biomacromolecules

Module No./ Code: MCh 20 WP 14

1. Contents and Qualification Objectives

Contents and Quantit	1					
Contents	Lecture:					
		of biochemistry				
		ural biology: relationship b			ion	
		etical background of macro	-	tallography		
	 Solvin 	g the crystal structure of a	protein			
	• Cryo E	EM				
	Bio EP	PR				
	Bio Nf	MR				
	• FRET,	SAXS				
	• Worke	ed examples of how to solv	e complex prob	olems in stru	ctural bic	ology:
	0	Crispr/Cas9				
	0	, ,				
	0					
	0	' '	sis			
	0					
	• "Emer	rging techniques": free elec	ctron laser			
	Lab course	: :				
		n expression and purificati	ion			
		ty assay				
	 Crysta 	Illization				
		g the crystal structure of a				
Qualification Targets		of biochemistry with a foo				
		etical background of struct			ious meth	nods
		n expression, purification a				
		ssing of diffraction data, so	olving macromol	lecular struc	tures witl	h
		llographic methods				
		acquired knowledge to ne				
		g complex problems by co	=	e scientific m	nethods	
		eness of limitations of scier				
		nsible working behavior in	a scientific labo	oratory		
		laboratory practice				
	· ·	r documentation of scienti				
	• Critica	ll assessment of scientific r	esults			
2. Course Format	ı			T	ı	
	Course	Topic	Language of	Group	Cours	
	Туре		Instruction	Size	е	[hr] (On-
					Units	Site/SLT)
					per	
	1.70	A 1 1 1		22	Week	400
	L/S	Analytical methods in	en.	30	3	120
	10	structural biology		2		(45 / 75)
	LC	Experiments on	en.	2	6	180
		lecture/seminar topics				(90 / 90)

3. Module Prerequisites				
Required	Passed module MCh 20 1.3	3		
Recommended				
4. Module Application				
	Degree Program	n/ Component	Compulsory/	Program-
			Elective	Related
				Semester
	MSc Chemistry		Elective	2 or 3
5. Requirements for ECT	S Credit Points			6. ECTS CP
Study Achievement(s)	Lab reports			
Examinations and	Final oral examination; en.			10
Examination Language				
7. Cycle		8. Workload	9. Du	ration
Winter semester	Winter and	300 hr	1 com	nester
Summer semester	summer semester	300 III	1 3611	iestei
10. Module Organizatio	n			
Instructor	PD Dr. G. Hagelüken			
Module Coordinator	PD Dr. G. Hagelüken			
Organizational Unit	Department of Chemistry	(FMNS), Institute of Physic	al and Theoretica	l Chemistry
Offering the Module				,
11. Other				
Literature:	B. Rupp, Biomolecular Crys	stallography: Principles, Pr	actice, and Applic	ation to
	Structural Biology, Garland	Science.		
	J. W. Engels, F. Lottspeich,	Bioanalytik, Springer Spel	ctrum.	

Natural Product Chemistry

Module No./ Code: MCh 20 WP 15

1. Contents and Qualification Objectives

$\boldsymbol{\Gamma}$	<u>_</u>	+~	ntc

Theory:

- Historical background
- Terms and definitions
- Classes of natural products:
 - Fatty acids, polyketides and prostaglandins
 - Terpenes including steroids and carotenoids
 - o Alkaloids
 - o Amino acids, ribosomal and non-ribosomal peptides
- Methods of structure elucidation:
 - o NMR spectroscopy including 2D NMR techniques
 - Elucidation of relative configuration
 - o Elucidation of absolute configuration
 - GC/MS and HPLC/MS including HRMS techniques
- Biosynthesis of natural products:
 - Classical methods (feeding of isotopically labeled precursors)
 - Modern methods (genetics, molecular and structural biology)
 - o Gene regulation
 - Bioinformatics in natural product chemistry
- Drugs:
 - o Important classes (antibiotics, cytostatic and virustatic compounds, etc.)
 - Structure activity relationship, drug design

Lab course:

Synthesis and analysis, e. g. preparation of isotopically labeled precursors for feeding experiments, synthesis of reference compounds for structure elucidation, isolation and structure elucidation by NMR of small natural products, GC/MS analysis of complex mixtures of natural products, gene cloning and purification of recombinant enzymes for biosynthetic studies.

Qualification Targets

- Basic knowledge of natural product chemistry
- Knowledge of structure elucidation, synthesis and biosynthesis of natural products
- Biological function of natural products, drugs
- Isolation (chromatographic purification) of natural products
- Structure elucidation by spectroscopic methods
- Elucidation of the biosynthesis of natural products by isotopic labeling experiments, genetic and enzymologic approaches

2. Course Format

Course	Topic	Language of	Group	Cours	Workload
Type		Instruction	Size	е	[hr] (On-
				Units	Site/ SLT)
				per	
				Week	
L/S	Natural product	en.	30	4	120
	chemistry				(60 / 60)
LC	Experiments on	en.	1–3	6	180
	lecture/seminar topics				(90 / 90)

3. Module Prerequisites					
Required	Passed module MCh 20 1.2	2			
Recommended	Participation in working gr biosynthesis problems	oup seminar for in-depth	discussion of natu	ral product	
4. Module Application					
	Degree Progran	Program- Related Semester			
	MSc Chemistry	2 or 3			
5. Requirements for ECT	S Credit Points			6. ECTS CP	
Study Achievement(s)	Lab report				
Examinations and Examination Language	Final oral examination; en			10	
7. Cycle		8. Workload	9. Du	ration	
Winter semester ⊠ Summer semester □	Winter and summer semester	300 hr	1 sem	nester	
10. Module Organizatio	n				
Instructor	Prof. Dr. J. Dickschat				
Module Coordinator	Prof. Dr. J. Dickschat				
Organizational Unit Offering the Module	Department of Chemistry (FMNS), Kekulé Institute of Organic Chemistry and Biochemistry				
11. Other					
Literature:	P. M. Dewick, <i>Medicinal N</i> C. T. Walsh, Y. Tang, <i>Natur</i>		oyal Society of Ch	emistry.	

Magnetic Resonance Spectroscopy

Module No./ Code: MCh 20 WP 17

1. Contents and Qualification Objectives

Lecture:

- The spin
- Interaction between spin and magnetic field/electromagnetic radiation
- Bloch equations
- Spectrometer setup: sources, wave guides, resonators
- T₁/T₂ relaxation and line shapes
- Liouville/von Neumann equation
- Spin-Hamiltonian for NMR and EPR
- Pulses, FIDs and echoes
- Pulse sequences and spin dynamics
- Coherence transfer pathways and density matrix formalism

Exercise:

- Applications of Magnetic Resonance Theory
- Calculation of spin dynamics
- Transformations

Seminar:

Independently working out a topic from magnetic resonance spectroscopy and presenting the topic in the form of a 30 minute lecture followed by a discussion.

Lab course:

- Pulses, FIDs and echoes
- Phase cycles
- Relaxation measurements
- Transient nutation

Qualification Targets

- Basic knowledge of spin physics
- Basic knowledge of EPR/NMR theory
- Basic understanding of the relationship between pulse sequence and spin dynamics
- Application of the methods and concepts learned to questions of magnetic resonance spectroscopy

2. Course Format

 Course	Topic	Language of	Group	Cours	Workload
Туре		Instruction	Size	е	[hr] (On-
				Units	Site/ SLT)
				per	
				Week	
L	Magnetic Resonance	en.	25	2	90
	Theory				(30 / 60)
S	Seminar presentation	en.	25	2	90
	on a magnetic				(30 / 60)
	resonance				
	spectroscopy topic				
Е	Applications of	en.	25	2	60
	Magnetic Resonance				(30 / 60)
	Theory				
LC	Experiments on	en.	25	2	60
	magnetic resonance				(30 / 60)
	spectroscopy				

3. Module Prerequisites						
Required	equired Passed module MCh 20 1.3					
Recommended						
4. Module Application						
	Degree Progran	n/ Component	Compulsory/	Program-		
			Elective	Related		
				Semester		
	MSc Chemistry		Elective	2 or 3		
5. Requirements for EC	TS Credit Points			6. ECTS CP		
Study Achievement(s)	50% of the achievable cred	dits are for the exercises a	nd lab reports			
Examinations and	Final oral examination; en.		10			
Examination Language			1			
7. Cycle 8. Workload 9. Duration						
Winter semester	Winter and	300 hr	1 500	nester		
Summer semester 🛛	summer semester	300 III	1 3611	iestei		
10. Module Organizatio	n					
Instructor	Prof. Dr. O. Schiemann					
Module Coordinator	Module Coordinator Prof. Dr. O. Schiemann					
Organizational Unit	nal Unit Department of Chemistry (FMNS), Institute of Physical and Theoretical Chemistry					
Offering the Module						
11. Other						
Literature: M. H. Levitt, Spin Dynamic, GB Wiley.						
Literature:	M. H. Levitt, Spin Dynamic	, GB Wiley.				
Literature:	M. H. Levitt, <i>Spin Dynamic</i> A. Schweiger, G. Jeschke, <i>F</i>		Paramagnetic Re	sonance,		

Sustainability in Chemistry

Module No./ Code: MCh 20 WP 18

1. Contents and Qualification Objectives

			 -	 _		_	_	- ,	_		
C_0	nte	nts			Т	he	mΛ	dт	ıle	: د	_ a

The module addresses issues of sustainability in chemistry relevant to society. Society needs scientists that can think critically and adapt **interdisciplinary** strategies to build a better future through sustainable development. In this module, students will learn about modern aspects of sustainable chemistry: a) the history of chemical pollution, b) how to prohibit and diminish toxic processes as well as products, and c) how to design processes and chemicals in ways that are both safe and sustainable. The module will teach a systems-thinking approach for understanding the connections between various aspects of sustainability.

Contents:

- Concept of sustainability in chemistry and its relation to society, economy, and the environment with practical examples
- Processes involving climate gases and other small molecules
- Chemistry of energy conversion and storage
- Catalysis and sustainability (materials, reactions, characterizations, mechanistic analysis)
- Life cycle of substrates and products (solvents, solvents effects, plastic, biodegradability, analysis)
- Criticality of resources

Qualification Targets

- Detailed knowledge of the concepts and methods of sustainable chemistry
- Application of the methods and concepts of sustainable chemistry and development of best practices for pertinent chemical problems
- Science communication: transferring knowledge via societal discourse
- Learning competence: Systems-thinking approach
- Problem solving in teams

2. Course Format

2. Course Format						
	Course	Topic	Language of	Group	Course	Workload
	Type		Instruction	Size	Units	[hr] (On-
					per	Site/SLT)
					Week	
	L	Sustainability in	en.	20	2	60
		Chemistry				(30 / 30)
	S	Seminar for the	en.	20	2	80
		lecture				(30 / 50)
	LC	Experiments on	en.	1	5	160
		lecture/seminar				(75 / 85)
		topics				

3. Module Prerequisites

Required	Passed module Mich 20 1.3

Recommended

4. Module Application

•••			
	Degree Program/ Component	Compulsory/	Program-
		Elective	Related
			Semester
	MSc Chemistry	Elective	2 or 3

5. Requirements for EC	6. ECTS CP						
Study Achievement(s)	Successful completion of the lab	Successful completion of the lab course and seminar presentation					
Examinations and	50% Student presentations, act	50% Student presentations, active participation in the discussion; 10					
Examination Language	50% oral examination; en.						
7. Cycle		8. Workload	9. Dui	ration			
Winter semester	Winter and summer	300 hr	1 sem	ester			
Summer semester 🛛	semester	300 111	1 Semester				
10. Module Organizatio	10. Module Organization						
Instructor	Prof. Dr. B. Kirchner, Prof. Dr. R. Glaum, Prof. Dr. C. Lu, Prof. Dr. A. Gansäuer, Jun						
ilistractor	Prof. Dr. P. Kielb, Prof. Dr. T. Bredow, JunProf. Dr. A. Bunsecu, Dr. W. Assenmacher						
Module Coordinator	Prof. Dr. B. Kirchner						
Organizational Unit	Department of Chemistry (FMN	S), Institute of Phy	sical and Theoretic	al Chemistry			
Offering the Module							
11. Other							
Literature:	Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice, Oxford University						
	Press: New York, 1998						
	Welton T, 2015, Proceedings of the Royal Society A: Mathematical, Physical &						
	Engineering Sciences, Vol: 471,	ISSN: 1471-2946					
	Neil Winterton, 2023, Chemistry for Sustainable Technologies: A Foundation						