One Two
Funding
EmmyNoetherLogo FCI
We gratefully acknowledge funding from the DFG via the Emmy Noether Programme  and the FCI.
 

News

  • Emmy Noether funding officially starts!
    (01/07/2021)
    We're exited about all the research, that will be facilitated by this funding and are celebrating over some Italian lunch. 
  • Larissa gets named reviewer of the month for Commun. Chem.
    (04/05/2021)
  • Damiano Tolazzi joins the group as Master's student!
    (06/04/2021)
  • ChemSystemsMeet was a success!
    (23/03/2021)
    ChemSystemsMeet2
    A big thanks to everyone involved!
  • Ruben Falkenburg joins the group as Master's student!
    (08/03/2021)
  • Max Notheis joins the group as PhD student!
    (01/03/2021)
  • Wiebke Rautenberg joins the group as PhD student!
    (01/02/2021)
  • New publication in Angew. Chem. Int. Ed.
    (20/11/2020)
    YangACIE2020
    Another great work with Dong Yang and collaborators from all over the world incl. Biao Wu and John Thoburn
    doi.org/10.1002/anie.202014568
  • New publication in JACS
    (10/11/2020)
    YangJACS2020
    Great collaboration with my dear colleagues Dong Yang, Jake Greenfield, and Tanya Ronson.
    doi.org/10.1021/jacs.0c09991
  • Emmy Noether project gets funded
    (28/09/2020)
    The Krbek Group's research will be funded by the Emmy Noether Programme (DFG) from 01/07/2021.
  • New publication in Chem. Sci.
    (09/09/2020)
    RizzutoChemSci2020
    doi.org/10.1039/d0sc04352d
  • The adventure begins... 
    (01/07/2020)
    Dr. von Krbek is kicking off her independent career as a junior research group leader (Habilitandin) at Kekulé-Institute for Organic Chemistry and Biochemistry funded by a Liebig Fellowship (FCI).
 
You are here: Home Research

Research interests

Most supramolecular self-assembly processes are thermodynamically driven, i.e. energetically high components assemble into a thermodynamically more favourable structure. In contrast, natural systems predominantly operate far from equilibrium through the dissipation of energy — i.e. their assembly is driven by the consumption of a fuel, allowing for greater structural complexity, spatiotemporal control over function, self-healing, adaptivity, emergent behaviour, and the ability to perform work. Implementing such out-of-equilibrium (OOE) processes into synthetic systems will lead to greater complexity and function in man-made materials. Furthermore, investigation of these man-made out-of-equilibrium systems might provide a better understanding of the kinetic and thermodynamic constraints in living systems.

Our aim is to design and investigate new metallo-supramolecular systems that assemble through the dissipation of energy using chemical, electrochemical, and photochemical “fuels”, with the final goal of furthering our understanding of out-of-equilibrium systems and emergent behaviour.

  
Research

Figure. (a) Free energy landscape of a classic self-assembly. (b) Free energy landscape of a dissipative self-assembly. Only the activated building blocks (green) can assemble. Activation of building blocks occurs via energy uptake (chemical fuel or light). Deactivation occurs via dissipation of energy (consumption of fuel). Once the fuel is consumed, the deactivated precursors (blue) cannot stay in the assembled state, the assembly is destroyed, and the system reverts to the thermodynamic equilibrium: the blue non-assembling precursors. (c) A dissipative self-assembly is coupled to an energy-driven chemical reaction network of at least two irreversible reactions: the activation and the deactivation reaction.

 

____________________________________________________________________________________________________________

Forschungsinteressen

Die meisten supramolekularen Selbstorganisationsprozesse sind thermodynamisch getrieben, d.h., dass sich die einzelnen Komponenten unter Freisetzung von Energie zu einem energetisch günstigeren Aggregat anordnen. In der Natur laufen solche Prozesse hingegen meist abseits des thermodynamischen Gleichgewichtes durch die Dissipation von Energie ab, d.h., ihre Selbstorganisation wird durch den Verbrauch eines „Brennstoffes“ angetrieben. Dies ist ein Grund, warum sich biologische Systeme durch eine große strukturelle Komplexität, die Möglichkeit zur räumlichen und zeitlichen Kontrolle ihrer Funktionen, die Fähigkeiten zur Anpassung an neue Umgebungsbedingungen, zur Selbstheilung und zur Verrichtung von Arbeit sowie durch emergentes Verhalten auszeichnen.

Unser Ziel ist es, neue metallo-supramolekularer Systeme zu entwickeln, welche sich durch die Dissipation von Energie anordnen mithilfe chemischer, eletro- und photochemischer Brennstoffe, um dadurch auf lange Sicht ein größeres Verständnis von Systemen außerhalb des thermodynamischen Gleichgewichts und emergenten Verhaltens zu erlangen.

Document Actions